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Dirac on Gauges and Constraints
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Received

We examine the relevance of Dirac’s view on the use of transformation theory and in-
variants in modern physics to current reflections on the meaning of physical symmetries,
especially gauge symmetries.
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1. INTRODUCTION

In his preface to the first edition of his masterpiece The Principles of Quantum
Mechanics in 1930 P. A. M. Dirac wrote

It has become increasingly evident in recent times . . . that [nature’s] fundamental laws
control a substratum of which we cannot form a mental picture without introducing
irrelevancies. The formulation of these laws requires the use of the mathematics of
transformations. The important things in the world appear as the invariants . . . of these
transformations (Dirac, 1987)

and proceeded by adding

The growth of the use of transformation theory, as applied first to relativity and later
to the quantum theory, is the essence of the new method in theoretical physics. Further
progress lies in the direction of making our equations invariant under wider and still
wider transformations.

These were indeed prophetic words. As foreseen by Dirac, twentieth-century phys-
ical developments have been significantly guided by the search for larger invariance
properties of physical laws. The notions of invariance, transformation group, and
symmetry (“invariance under a transformation group”) have notably acquired a
crucial role in the field. If physics has much progressed since the first appear-
ance of Dirac’s book on quantum mechanics, it is in large part due to the role of
symmetry principles and their group-theoretical exploitation. This is well-known
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history, and physics textbooks now typically devote a good part to explaining how
symmetries work in physical theories and how they lead to so many important
physical consequences.

But there is also another aspect of Dirac’s remarks that, as we want to show in
this paper, is of special significance from today’s perspective: that is, his reflections
on the use of transformations and invariants in modern physics. The role and rele-
vance of symmetries to physics, which are well known and uncontroversial, have
in fact created an interpretative problem. Where do symmetries come from, what is
their real meaning? After the reflections by Weyl (1982) and Wigner (1967)—the
classic references on the subject—questions of this kind have received different
sorts of answers in the literature. Symmetries are of different types (“external”
or internal,’ “global” or “local,” “continuous” or “discrete,”. . .) and, accordingly,
depending on the type of symmetry considered different options appear be favored.
For example, spacetime (or “external”) symmetries are generally taken to motivate
realistic or ontic options (symmetries as part of the ontology or structure of the
physical world); while other types of symmetries, especially the gauge (or “local”)
symmetries of the Standard Model, appear to provide good reasons for preferring
options of an epistemic sort (the presence of symmetries is related, first of all,
to our way of representing the physical world). In fact, whether it is possible to
provide a satisfactory and unitary view on the meaning of physical symmetries
remains an open question, at the center of an intensive debate among physicists
and philosophers of physics.2

It is in the light of this discussion that, in this paper, we shall consider Dirac’s
view as it results from examining his 1930 preface and in general his writings.
That is, the view that the application of transformation theory and the related
use of invariants in theoretical physics is closely connected with the inevitable
introduction of “irrelevancies” when attempting a fundamental description of the
physical world. According to Dirac, while the classical world can be considered
“to be an association of observable objects . . . moving about according to definite
laws of force, so that one could form a mental picture in space and time of the
whole scheme,” this is no more possible for modern physics. In Dirac’s words,
“it has become increasingly evident that nature works on a different plan.” The
fundamental laws of nature “do not govern the world as it appears in our mental
picture in any very direct way”: coming back to our first quotation, they control
a substratum of which “we cannot form a mental picture without introducing
irrelevancies” (Dirac, 1987, p. vii).

What is the value of this view in the context of the current debate on sym-
metries? In the next section we show how a very similar view emerges naturally
when considering the general meaning of the scientific notion of symmetry.

2 A structured picture of the current debate on physical symmetries is offered in Brading and Castellani
(2003).
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2. SYMMETRY, EQUIVALENCE, IRRELEVANCE

Symmetry, in its scientific sense, has developed from the initial notion of
a regular arrangement of equal parts in space to the current definition in terms
of invariance with respect to a transformation group. If we follow this semantic
evolution in its whole course, what emerges as an essential and constant feature is
the close connection that can be established between symmetry and equivalence: at
the beginning, as a specific relation between symmetry and geometrical equality;
in the end, as a general link between the notions of symmetry, equivalence class
and transformation group.3

Without entering into more detail, it is in fact a general result that, given an
ensemble of elements, a symmetry group corresponds to a partition of the ensemble
into equivalence classes. As van Fraassen (1989, p. 234) effectively states it,

Symmetries are transformations · · · that leave all relevant structure intact—the result is
always exactly like the original, in all relevant respects. What the relevant respects are
will differ from context to context. So settle on some respect you like: colour or height
or cardinality or charm or some combination thereof. You have now partitioned your
domain of discourse into equivalence classes.

In short, a symmetry corresponds to a situation of equivalence with respect to a
given context: the elements that are like each other in all the relevant aspects are
connected by symmetry transformations, so forming equivalence classes. How is
this instantiated in physics? A physical symmetry corresponds to the equivalence
of a number of elements—the equivalence of “identical” quantum particles, the
equivalence of spacetime points, the equivalence of phase space points lying in
the same gauge orbit, . . . —with respect to the physical theory considered. This
means that the theory gives the same description (or the fundamental dynamical
equations do not change) when the equivalent elements are exchanged with one
another by the transformations of the symmetry group. This is uncontroversial.
What is controversial is how to understand the equivalence of the elements.

In general, it is quite natural to think that if some elements are equivalent
from the viewpoint we are considering, we do not need to take all of them into
account. In some way, equivalence is linked to irrelevance here: the presence
of equivalent elements corresponds to the presence of irrelevant features in the
context considered. In physics, for example, it is quite common to understand
the equivalence of space points (corresponding to translational symmetry) in the
sense of the irrelevance of an absolute position to the physical description; in the
same way, the equivalence of quantum particles of the same kind (permutation
symmetry) is taken to signify the irrelevance of a distinction between so-called
identical particles in the context of quantum theory and so on. We thus arrive very
near, here, to the position expressed by Dirac: physical symmetries are related to

3 This point is explored in detail in Castellani (2003).
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the presence of irrelevant elements in the physical description; or, more precisely,
in describing the physical world we introduce irrelevant theoretical elements and
this is signalled by the presence of symmetries.

Note that the view has an immediate empirical counterpart in terms of non
observability. The idea is that irrelevant theoretical features make no observable
difference. Symmetries are thus connected with the presence of non observable
quantities in the physical description, with the corollary that the empirical violation
of a symmetry (the paradigmatic case is parity violation in the case of weak
interactions) is intended in the sense that “what was thought to be a non observable
turns out to be actually an observable.”4

Summing up, according to the above-mentioned view—quite popular, espe-
cially among physicists—symmetries are connected with irrelevant, nonobservable
theoretical features in the physical description. Now, this is still very vague: in what
way are these irrelevancies introduced? What is peculiar to the ones signalled by
symmetries? And, finally: is that all there is to say about the presence of physical
symmetries? Thinking about the central role that symmetries play in contemporary
physics, this could appear a rather minimal, if not poor, perspective.

These questions will be addressed in the following sections. The key issue
in our analysis will be the arbitrariness that is implied in the above way of ap-
proaching the interpretative problem originated by physical symmetries. There
are two kinds of arbitrariness that are connected with the presence of physi-
cal symmetries: (a) a “scale choice arbitrariness”; and (b) a “surplus structure
arbitrariness.”

(a) On the one side, there is a degree of arbitrariness in the distinction between
what is relevant and what is irrelevant with respect to a given context.
What is relevant now can be irrelevant in the future (and vice versa).
And what is relevant can also depend on the level of detail at which it is
considered. In physics the level of detail is usually determined in terms
of the range values of a given scale (for example, an energy scale or a
length scale). Here comes into play the idea which is at the basis of the
recent view of current quantum field theories as effective theories: physics
can change as one changes the scale considered, at very different ranges
of energy scales we can have remarkably different physics. The form of
arbitrariness involved here has thus to do with the arbitrariness of the
choice of the scale range. In this paper we shall not dwell on this kind of
arbitrariness.5

4 Quoting from physicist Lee (1988, p. 178), a most strenuous defender of the view of symmetry in
terms of nonobservability. In his words, “the root of all symmetry principles lies in the assumption
that it is impossibile to observe certain basic quantities.”

5 A more detailed account of this point, exploring what can be drawn from the effective field theory
approach when considering the symmetry issue, can be found in Castellani (2003).



Dirac on Gauges and Constraints 1507

(b) On the other side, there is always a given freedom associated with the
fact that a symmetry gives rise to equivalence classes: that is, the freedom
to choose one element as representative of the class. In physics, this
corresponds to the presence of surplus degrees of freedom in the theory,
an example of what has been called by Redhead (2003; 1975) “surplus
structure.” There is now a quite intensive discussion in the literature about
the significance of these surplus degrees of freedom in the case of local
(i.e. spacetime dependent) symmetries (Belot, 2001; Belot, and Earman,
1999; Earman, 2001, 2003; Readhead, 2003). Taking them literally leads
to indeterminism; trying to “eliminate” them in some way (for example,
by moving from the original phase space to a “reduced space,” the points
of which are equivalence classes of the original phase space points that
are related by symmetry transformations) is the common stategy, but not
without problems. Depending on what sort of option is chosen, there
is a certain arbitrariness either in the physics (indeterminism) or in the
mathematical representation (unphysical degrees of freedom giving rise to
arbitrary functions of time). This situation is best dealt with by considering
the relation that can be established between symmetries and constraints.
The framework is that of the theory of constrained systems, going back to
Dirac’s seminal works in the 1950s (Dirac, 1950, 1951). Dirac’s theory of
constrained Hamiltonian systems and its significance for understanding
the sort of arbitrariness implied by symmetries will be the subject of the
next section.

3. DIRAC’S THEORY OF CONSTRAINED SYSTEMS
AND THE MEANING OF GAUGES

Before turning to Dirac’s Hamiltonian treatment of constrained systems, let
us anticipate the reason for addressing this issue. What have constraints to do with
symmetries? There is in fact an important relation between them, more precisely
between gauges and constraints. As we shall see, all systems with a gauge invari-
ance are necessarily singular systems with constraints; and, as first conjectured
by Dirac in his 1950s analysis, all first-class constraints are demonstrated to be
generators of gauge transformations.6 Exploring the relevance of these results to
understanding the meaning of gauges is the main aim of this paper. Note that, as
current theories of known fundamental physical interactions are gauge theories,
understanding gauges is without doubt a priority in today’s reflections on physics
and symmetries.

6 To be precise, first-class contraints generate “small” gauge transformations, that is time (or spacetime)
dependent symmetry transformations continuously connected to the identity transformation, thus
defining a simply connected group. I am grateful to Jan Govaerts for letting me know the correct
terminology.
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Dirac’s principal concepts and results concerning singular theories and con-
straints are best presented in his famous 1964 Lectures on Quantum Mechanics
(Dirac, 1964). Let us then follow this text in our short overview of Dirac’s anal-
ysis, from its starting point (the aim and the problem to face) to its final result.7

Schematically

• Dirac’s aim. Dirac’s aim is to arrive at a general method of canonical
quantization.

To quantize, the first step is to put the classical theory in a form suitable
for passing to the quantum theory, which is (for canonical quantization) the
Hamiltonian form. Considering, for simplicity, the case of a system with a
finite number N of degrees of freedom, with qn (n = 1, . . . , N ) the general
coordinate and q̇n = dqn/dt its velocity, Dirac’s method consists in8

(1) starting with an action integral S = ∫
L(q, q̇)dt , with L = L(q, q̇)

being the Lagrange function;
(2) getting a Lagrangian dynamics from it (i.e., deriving the equations of

motion from the variation of the action integral):

d

dt

(
∂L

∂ q̇n

)
− ∂L

∂qn
= 0, n = 1, . . . , N ,

(3) and then passing to the Hamiltonian formulation (qn , q̇n) → (qn , pn)
by introducing the momentum variables pn , which are defined by pn =
∂L/∂q̇n .

• Dirac’s Problem. The above standard Hamiltonization procedure is not
possible in the case that the velocities q̇n are not uniquely determined in
terms of the coordinates qn and momenta pn only; that is, in the case that
the matrix ∂pn/∂ q̇n′ is singular (its determinant vanishes). In Lagrangian
terms, this is the situation expressed by the singularity of the Hessian matrix
of the Lagrange function, that is by the fact that

det

(
∂2L

∂ q̇n∂ q̇n′

)
= 0

which is the case for singular systems. The problem is then to put a gen-
eral classical theory (including the singular case) into the Hamiltonian
form.

• Dirac’s solution: His Hamiltonian treatment of constrained systems. Dirac’s
solution is to develop a formulation of singular theories very similar to the
standard Hamiltonian formulation, and then proceed to Hamiltonize. In

7 Recent treatments of the theory of constrained Hamiltonian systems that we shall also follow here
are Govaerts (1991) and Henneaux and Teitelboim (1992).

8 For recent general treatments for all kinds of systems, see Gitman and Tyutin, 1990; Govaerts, 1991;
Henneaux and Teitelboim, 1992).
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substance, his strategy for dealing with the case of singular systems is
grounded on the following points.
(1) The presence of constraints. The non invertibility of the map from

velocity phase space to momentum phase space (singularity of the
matrix ∂pn/∂ q̇n′ ) means that not all momenta are independent func-
tions of the velocities; that is, there must exist a set of relations of the
form

φm(q , p) = 0, m = 1, . . . , M

called by Dirac the “primary constraints” of the Hamiltonian
formalism.9

(2) The generalization of the Hamiltonian. Given a set of N phase space
degrees of freedom and a set of M primary constraints, time evolution
may be generated not only by the canonical Hamiltonian Ho = pnq̇n −
L , but (since we may add to it any linear combination of the φ’s which
are zero) by a generalized Hamiltonian of the form

H∗ = Ho + um(qn , pn; t)φm(qn , pn)

where φm are all primary constraints and um are arbitrary functions of
time and of the phase space variables.10

Starting with this expression and carrying out his analysis by
imposing all the consistency requirements of the theory, Dirac arrives
at the following final expression for the generalized Hamiltonian:

H∗ = H + va(t)φa ,

where H = Ho + Umφm and φa = Vamφm . The Um and Vam are func-
tions of the phase-space variables satisfying to given consistency equa-
tions, while the va(t) are arbitrary functions of time (their number being
equal to the number of primary first-class constraints, usually less than
the number of all constraints).11

(3) The arbitrariness implied and its consequences. The result is that,
although all consistency requirements have been satisfied, the theory
has still arbitrary coefficients which may depend on time, the va(t).
This means that the general solution of the Hamiltonian equations of
motion, with given initial conditions, depends on arbirary functions of

9 Dirac distinguishes between primary and secondary constraints (depending on whether their defini-
tion is independent of the Lagrangian equations of motion or not), and first-class and second-class
constraints (depending on whether their Poisson brackets with all other constraints is weakly vanish-
ing or not). The important distinction for the treatment of constrained systems is the second one. For
details see Dirac (1964), pp. 14–18.

10 We follow here, in part, also the notation used in Govaerts (1991).
11 For details, see Dirac (1964, pp. 13–16) and Govaerts (1991, pp. 91–95).
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time, which is due to the fact that the description of singular systems
includes dependent degrees of freedom. Quoting Dirac (1964, p. 17):

These arbitrary functions of the time must mean that we are using a mathe-
matical framework containing arbitrary features, for example a coordinate
system which we can choose in some arbitrary way, or the gauge in electro-
dynamics. As a result of this arbitrariness in the mathematical framework,
the dynamical variables at future times are not completely determined by
the initial dynamical variables, and this shows itself up through arbitrary
functions appearing in the general solution.

What the arbitrariness exactly consists in and where the origin of the
surplus theoretical features is (how they enter in the theory) is made
here quite precise. Namely, as Dirac clearly states, the arbitrariness
in the choice of the functions va(t) implies that the different trajec-
tories in phase space obtained under time evolution for given initial
conditions but for different va(t) should be considered as representing
the same configuration of the system. How are these different points
and trajectories in phase space representing the same time dependent
state of the system related to one another? At this point, the actual
meaning of first-class constraints as generators of local Hamiltonian
gauge transformations, which is the upshot of the final part of Dirac’s
analysis, comes into play.

(4) The meaning of first-class constraints. To get a physical understanding
of the above situation—we start with given initial variables q’s and
p’s and get a solution of the equations of motion containing arbitrary
functions—Dirac proceeds as follows:
(a) As the qn and the pn at later times are not uniquely determined

by the initial state, because of the arbitrary functions coming in,
the problem is to look for all the sets of qn and pn that correspond
to one particular physical state. All those values for the qn and
pn at a certain time which can evolve from one initial state must
correspond to the same physical state at that time.

(b) Taking then particular initial values for the qn and pn at time t = 0,
and considering what the qn and pn are after a short time interval
δt , the value at time δt of a general dynamical variable g is

g(δt) = go + ġδt

= go + [g, H∗]δt

= go + δt{[g, H ] + va[g, φa]}

(c) As the coefficients va are arbitrary, we can take different values v ′
a .
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This gives a different g(δt), the difference being:

�g(δt) = δt(va − v ′
a)[g, φa],

or

�g(δt) = εa[g, φa],

where

εa = δt(va − v ′
a).

We can change all Hamiltonian variables in accordance with the rule
�g(δt) = εa[g, φa], and the new Hamiltonian variables will describe the
same state. Now, Dirac notes, this change in the Hamiltonian variables con-
sists in applying an infinitesimal contact transformation with a generating
function εaφa (that is, a gauge transformation). By then considering also
the case of secondary constraints, Dirac (1964, p. 23) finally arrives at the
following conclusion:

The final result is that those transformations of the dynamical variables which
do not change physical states are infinitesimal contact transformations in which
the generating function is a primary first-class constraint or possibly a secondary
first-class constraint.

Dirac’s conjecture that his result should regard also secondary first-class constraints
was indeed correct, as it has been later demonstrated.12 The upshot of Dirac’s theory
is then, in general terms, that all first-class constraints are generators of gauge
transformations. More precisely, first-class constraints generate transformations
which relate the different phase space points (all taken at equal time) that belong
to different trajectories corresponding to the same configuration of the system.
These are infinitesimal transformations leaving the Hamiltonian description of the
system invariant, i.e. the gauge symmetries of the system.13

Now, what does this tell us about the meaning of gauges? Let us first shortly
consider the other side of the connection between gauge and constraints, that is
the fact that gauge theories are singular theories with constraints. According to
Noether’s second theorem, we have that for a gauge invariant system—that is,
a system invariant under transformations defining a simply connected continuous
group, whose parameters are r arbitrary functions of time (or spacetime)—there are
r independent identities of the Euler–Lagrange derivates of the Lagrange function.
These identities are consequences of the gauge invariance and define (Lagrangian)
constraints on the system. That gauge invariant systems are singular systems may
be easily seen by analyzing these identities. We thus arrive at the result that all

12 The result, obtained in Castellani (1982), is actually valid in a slightly different form with respect to
the one conjectured by Dirac. But we do not need to enter into such details here.

13 See for details Govaerts (1991), 116–121.
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systems with a gauge invariance are indeed singular systems with constraints, with
the related presence of arbitrary functions of time in the general solutions of the
equations of motion.14

Note that the above result is not at all surprising: gauge transformations
do in fact naturally involve arbitrary functions of time. Quoting Henneaux and
Teitelboim (1992, p. 3), “a gauge theory may be thought of as one in which the
dynamical variables are specified with respect to a ‘reference frame’ whose choice
is arbitrary at every instant of time.” Which means that one cannot expect that the
equations of motion will determine all the dynamical variables for all times for
specific initial conditions (it will always be possible to change the reference frame
at a future time, while keeping the initial conditions fixed). The actual meaning of
these arbitrary functions of time and what they in fact imply is then made clear by
analyzing gauge systems as constrained Hamiltonian systems.

4. CONCLUSION

We are faced with situations where a physical system is described by more
variables than there are physically independent degrees of freedom. We have seen
above in what the arbitrariness peculiar to this sort of situation consists, and how
the connected surplus theoretical features enter into the theory. In particular: many
different phase space points and trajectories representing the same time dependent
configuration of the system. The Hamiltonian treatment à la Dirac shows how
they are related to one another by gauge transformations. How should we deal,
then, with these equivalent or redundant descriptions? The most natural way is by
keeping the physically meaningful degrees of freedom only (ideally, by means of
a description of the dynamical evolution of the system in terms of the “reduced”
space representing the truly distinct possible configurations of the system). In gauge
terms, this corresponds to the common strategy of attributing physical meaning to
gauge invariant quantities only. The underlying idea is that in a theory where the
system is described by more variables than the number of independent degrees of
freedom, “the physically meaningful degrees of freedom reemerge as being those
invariant under a transformation connecting the variables (gauge transformation)”
(Henneaux and Teitelboim, 1992, p. 1).

The philosophy, in substance, is the following: for given reasons we introduce
extra variables (surplus theoretical features or “irrelevancies,” in Dirac’s words)
in the theory, and at the same time we bring in a (gauge) symmetry “to extract
the physically relevant context” (Henneaux and Teitelboim, 1992, p. 1). The view
explored in Section 2, according to which we introduce irrelevant theoretical el-
ements in describing the physical world and this is signalled by the presence of

14 For details on this part and, especially, on the exact relation between the Lagrangian and Hamiltonian
treatments, see Gitman and Tyutin (1990) and Govaerts (1991).
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symmetries, is thus made quite precise. We can now complete our initial quotation
from Dirac’s 1930 preface (1987, p. vii):

This state of affairs is very satisfactory from a philosophical point of view, as implying
an increasing recognition of the part played by the observer in himself introducing the
regularities that appear in his observations, and a lack of arbitrariness in the ways of
nature . . . .

To conclude, what we have sketched in this paper—following its historical and
conceptual roots—is a strong epistemic attitude in considering the meaning of
symmetries. Now, it is our opinion that it is possible to maintain the basic motiva-
tions for such a view, but in a “milder” way. The idea, that we develop elsewhere,15

is a sort of compromise: symmetries do enter in our way of describing the physical
world, but in a way that is significantly “constrained” by the reality we want to
describe. In this regard, particular relevance is attributed to the role played by
boundaries conditions and physical scales. But for this we have to leave Dirac and
follow another path.

ACKNOWLEDGMENT

I am very grateful to Katherine Brading, Leonardo Castellani, Marisa Dalla
Chiara, Jan Govaerts, and Josep Pons for helpful comments and suggestions.

REFERENCES

Belot, G. (2001). “The principle of sufficient reason,” The Journal of Philosophy XCVIII: 55–74.
Belot, G. and Earman, J. (1999). From metaphysics to physics. In From Physics to Philosophy, J.

Butterfield and C. Pagonis, eds., Cambridge University Press, Cambridge, pp. 166–186.
Brading, K. and Castellani, E. (eds.) (2003). Symmetries in Physics: Philosophical Reflections,

Cambridge University Press, Cambridge, UK.
Castellani, L. (1982). Symmetries in constrained hamiltonian systems. Annals of Physics 143, 357–371.
Castellani, E. (2003). Symmetry and equivalence. In Symmetries in Physics: Philosophical Reflections,

K. Brading and E. Castellani, eds., Cambridge University Press, Cambridge, UK.
Dirac, P. A. M. (1950). Generalized hamiltonian dynamics. Canadian Journal of Mathematics 2, 129.
Dirac, P. A. M. (1951). The hamiltonian form of field dynamics. Canadian Journal Mathematics 3, 1.
Dirac, P. A. M. (1964). Lectures on Quantum Mechanics, Academic Press, New York.
Dirac, P. A. M. (1987). The Principles of Quantum Mechanics, Clarendon Press, Oxford. (Original

work published 1930)
Earman, J. (2001). Gauge Matters. PSA 2000, PITT-PHIL-SCI00000070.
Earman, J. (2003). Tracking down gauge: An ode to the constrained Hamiltonian formalism. In Sym-

metries in Physics: Philosophical Reflections, K. Brading and E. Castellani, eds., Cambridge
University Press, Cambridge, UK.

Gitman, D. M. and Tyutin, I. V. (1990). Quantization of Fields with Constraints, Springer, Berlin.
Govaerts, J. (1991). Hamiltonian Quantisation and Constrained Dynamics, Leuven University Press,

Leuven.

15 Elena Castellani (2003). “Symmetries, Boundaries and Constraints,” manuscript in preparation.



1514 Castellani

Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge Systems, Princeton University Press,
Princeton, NJ.

Lee, T. D. (1988). Particle Physics and Introduction to Field Theory, Harwood Academic, New York.
(Original work published 1981)

Redhead, M. (1975). Symmetry in intertheory relations. Synthese 32, 77–112.
Redhead, M. (2003). The interpretation of gauge symmetry. In M. Kuhlmann, H. Lyre, and A. Wayne,

eds., Proceedings of the Conference Ontological Aspects of Quantum Field Theory, Bielefeld,
Oct. 11–13, 1999, World Scientific, Singapore.

van Fraassen, B. C. (1989). Laws and Symmetry, Clarendon Press, Oxford.
Weyl, H. (1982). Symmetry, Princeton University Press, Princeton, NJ. (Original work published 1952)
Wigner, E. P. (1967). Symmetries and Reflections, Indiana University Press, Bloomington, IN.


